Abstract

Background: The electrocardiogram(ECG) has the considerable diagnostic significance, and applications of ECG monitoring are diverse and in wide use. Noises that commonly disturb the basic electrocardiogram are power line interference(PLI), instrumentation noise, external electromagnetic field interference, noise due to random body movements and respiration movements. These noises can be classified according to their frequency content. It is essential to reduce these disturbances in ECG signal to improve accuracy and reliability. The bandwidth of the noise overlaps that of wanted signals, so that simple filtering cannot sufficiently enhance the signal to noise ratio. It is difficult to apply filters with fixed filter co-efficients to reduce these noise. Adaptive filter technique is required to overcome this problem as the filter coefficients can be varied to track the dynamic variations of the signals. Adaptive filter based on the least mean square (LMS) algorithm and recursive least squares (RLS) algorithm are applied to noisy ECG to reduce 50 Hz power line noise and motion artifact noise. Method: ECG signal is taken from physionet database. A ECG signal (without noise) was mixed with constant 0.1 mVp-p 50 Hz interference and motion artifact noise processed with Adaptive filter based on the least mean square (LMS) algorithm and recursive least squares (RLS) algorithm. Simulation results are also shown. Performance of filters are analyzed based on SNR and MSE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.