Abstract
We demonstrate control of the fine-structure splitting of the exciton emission lines in single InAs quantum dots by the application of an in-plane magnetic field. The composition of the barrier material and the size and symmetry of the quantum dot are found to determine decrease or increase in the linear polarization splitting of the dominant exciton emission lines with increasing magnetic field. This enables the selection of dots for which the splitting can to be tuned to zero, within the resolution of our experiments. General differences in the g-factors and exchange splittings are found for different types of dot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.