Abstract

Abstract Let π be an automorphic irreducible cuspidal representation of GL m {\operatorname{GL}_{m}} over ℚ {\mathbb{Q}} with unitary central character, and let λ π ⁢ ( n ) {\lambda_{\pi}(n)} be its n-th Dirichlet series coefficient. We study short sums of isotypic trace functions associated to some sheaves modulo primes q of bounded conductor, twisted by multiplicative functions λ π ⁢ ( n ) {\lambda_{\pi}(n)} and μ ⁢ ( n ) ⁢ λ π ⁢ ( n ) {\mu(n)\lambda_{\pi}(n)} . We are able to establish non-trivial bounds for these algebraic twisted sums with intervals of length of at least q 1 / 2 + ε {q^{1/2+\varepsilon}} for an arbitrary fixed ε > 0 {\varepsilon>0} .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.