Abstract
Features such as face, fingerprint, and iris imprints have been used for authentication in biometric system. The toughest feature amongst these is the face. Extracting a region with the most potential face features from an image for biometric identification followed by illumination enhancement is a commonly used method. However, the region of interest extraction followed by illumination enhancement is sensitive to image face feature displacement, skewed image, and bad illumination. This research presents a cancell able face image algorithm built upon the speeded-up robust features method to extract and select features. A speeded-up robust feature approach is utilised for the image’s features extraction, while Winner-Takes-All hashing is utilised for match-seeking. Finally, the features vectors are projected by utilising a random form of binary orthogonal matrice. Experiments were conducted on Yale and ORL datasets which provide gray scale images of sizes 168 × 192 and 112 × 92 pixels, respectively. The execution of the proposed algorithm was measured against several algorithms using equal error rate metric. It is found that the proposed algorithm produced an acceptable performance which indicates that this algorithm can be used in biometric security applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.