Abstract

BackgroundIncreasing the predictability and reducing the rate of side effects of oral anticoagulant treatment (OAT) requires further clarification of the cause of about 50% of the interindividual variability of OAT response that is currently unaccounted for. We explore numerically the hypothesis that the effect of the interindividual expression variability of coagulation proteins, which does not usually result in a variability of the coagulation times in untreated subjects, is unmasked by OAT.ResultsWe developed a stochastic variant of the Hockin-Mann model of the tissue factor coagulation pathway, using literature data for the variability of coagulation protein levels in the blood of normal subjects. We simulated in vitro coagulation and estimated the Prothrombin Time and the INR across a model population. In a model of untreated subjects a "canalization effect" can be observed in that a coefficient of variation of up to 33% of each protein level results in a simulated INR of 1 with a clinically irrelevant dispersion of 0.12. When the mean and the standard deviation of vitamin-K dependent protein levels were reduced by 80%, corresponding to the usual Warfarin treatment intensity, the simulated INR was 2.98 ± 0.48, a clinically relevant dispersion, corresponding to a reduction of the canalization effect.Then we combined the Hockin-Mann stochastic model with our previously published model of population response to Warfarin, that takes into account the genetical and the phenotypical variability of Warfarin pharmacokinetics and pharmacodynamics. We used the combined model to evaluate the coagulation protein variability effect on the variability of the Warfarin dose required to reach an INR target of 2.5. The dose variance when removing the coagulation protein variability was 30% lower. The dose was mostly related to the pretreatment levels of factors VII, X, and the tissue factor pathway inhibitor (TFPI).ConclusionsIt may be worth exploring in experimental studies whether the pretreatment levels of coagulation proteins, in particular VII, X and TFPI, are predictors of the individual warfarin dose, even though, maybe due to a canalization-type effect, their effect on the INR variance in untreated subjects appears low.

Highlights

  • Increasing the predictability and reducing the rate of side effects of oral anticoagulant treatment (OAT) requires further clarification of the cause of about 50% of the interindividual variability of OAT response that is currently unaccounted for

  • Warfarin is absorbed from the gut completely, it blocks irreversibly the Vitamin-K epoxyde reductase complex 1 (VKORC1), an enzyme found mostly in the liver

  • We developed a stochastic version of the Hockin-Mann model of the tissue factor pathway kinetics by replacing, in the equations from [4] the coefficients corresponding to the initial levels of factors II, V, VII, VIIa, VIII, IX, X, XI, antithrombinIII and tissue factor pathway inhibitor (TFPI) with normally distributed, independent, random variables

Read more

Summary

Introduction

Increasing the predictability and reducing the rate of side effects of oral anticoagulant treatment (OAT) requires further clarification of the cause of about 50% of the interindividual variability of OAT response that is currently unaccounted for. There is a continuing need to identify measurable causes of the substantial variability of the individual response to oral anticoagulants, such as warfarin or acenocoumarol. Finding such causes is required to improve predictability and reduce the high levels of morbidity and mortality associated to these treatments. Warfarin is absorbed from the gut completely, it blocks irreversibly the Vitamin-K epoxyde reductase complex 1 (VKORC1), an enzyme found mostly in the liver. It is eliminated by other liver enzymes, from the cytochrome P-450 family, mostly by CYP450-2C9.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call