Abstract
Heart failure has always been a prevalent, disabling, and potentially life-threatening disease. For the treatment of heart failure, controlling cardiac remodeling is very important. In recent years, clinical trials have shown that sodium-glucose cotransporter-2 (SGLT-2) inhibitors not only excel in lowering glucose levels but also demonstrate favorable cardiovascular protective effects. However, the precise mechanisms behind the cardiovascular benefits of SGLT-2 inhibitors remain elusive. In this research, we assessed the impact of canagliflozin (CANA, an SGLT-2 inhibitor) on cardiac remodeling progression in mice and preliminarily elucidated the possible mechanism of action of the SGLT-2 inhibitor. Our results indicate that the administration of canagliflozin significantly attenuates myocardial hypertrophy and fibrosis and enhances cardiac ejection function in mice with isoprenaline (ISO)-induced cardiac remodeling. Notably, excessive mitophagy, along with mitochondrial structural abnormalities observed in ISO-induced cardiac remodeling, was mitigated by canagliflozin treatment, thereby attenuating cardiac remodeling progression. Furthermore, the differential expression of AMPK/PINK1/Parkin pathway-related proteins in ISO-induced cardiac remodeling was effectively reversed by canagliflozin, suggesting the therapeutic potential of targeting this pathway with the drug. Thus, our study indicates that canagliflozin holds promise in mitigating cardiac injury, enhancing cardiac function, and potentially exerting cardioprotective effects by modulating mitochondrial function and mitophagy through the AMPK/PINK1/Parkin pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.