Abstract
Folate was first isolated from spinach leaves in 1941 and characterized as pteroylglutamic acid. Although plants, fungi, and bacteria synthesize folate de novo, animal cells lack key enzymes of the folate biosynthetic pathway and a dietary source of folate is required for normal growth and development. Folates have importance in human nutrition, health, and disease, and antifolate drugs are commonly used in cancer chemotherapy. In the majority of living cells folates occur as one-carbon substituted tetrahydropteroylpolyglutamate derivatives. These folates donate one-carbon groups during the synthesis of purines, formylmethionyl-tRNA, thymidylate, serine, and methionine. In the last 30 years, research on the folate biochemistry of plant species has intensified and been aided by the development of improved methods for folate isolation and characterization. These studies have resulted in basic information on the nature of plant folylpolyglutamates, folate biosynthesis, the enzymology of several folate-dependent reactions, and the roles of chloroplasts, mitochondria, and the cytosol in the pathways of one-carbon metabolism.Key words: plants, folates, folate biosynthesis, folate-dependent enzymes, one-carbon metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.