Abstract

Theories of number development have traditionally argued that the acquisition and discrimination of symbolic numbers (i.e., number words and digits) are grounded in and are continuously supported by the Approximate Number System (ANS)—an evolutionarily ancient system for number. In the current study, we challenge this claim by investigating whether the ANS continues to support the symbolic number processing throughout development. To this end, we tested 87 first- (Age M = 6.54 years, SD = 0.58), third- (Age M = 8.55 years, SD = 0.60) and fifth-graders (Age M = 10.63 years, SD = 0.67) on four audio-visual comparison tasks (1) Number words–Digits, (2) Tones–Dots, (3) Number words–Dots, (4) Tones–Digits, while varying the Number Range (Small and Large), and the Numerical Ratio (Easy, Medium, and Hard). Results showed that larger and faster developmental growth in the performance was observed in the Number Words–Digits task, while the tasks containing at least one non-symbolic quantity showed smaller and slower developmental change. In addition, the Ratio effect (i.e., the signature of ANS being addressed) was present in the Tones–Dots, Tones–Digits, and Number Words–Dots tasks, but was absent in the Number Words–Digits task. These findings suggest that it is unlikely that the ANS continuously underlines the acquisition and the discrimination of the symbolic numbers. Rather, our results indicate that non-symbolic quantities and symbolic numbers follow qualitatively distinct developmental paths, and argue that the latter ones are processed in a semantic network which starts to emerge from an early age.

Highlights

  • Theories of number development have traditionally argued that the acquisition and discrimination of symbolic numbers are grounded in and are continuously supported by the Approximate Number System (ANS)—an evolutionarily ancient system for number

  • Our results suggest that it is unlikely that the ANS underlies the acquisition and the processing of symbolic numbers

  • Our results showed that in third- and fifth-graders, the performance is much better in the Number Words–Digits task, and slightly better in the Number Words–Dots task than in the other two tasks, i.e., the Tones–Dots and Tones–Digits tasks

Read more

Summary

Introduction

Theories of number development have traditionally argued that the acquisition and discrimination of symbolic numbers (i.e., number words and digits) are grounded in and are continuously supported by the Approximate Number System (ANS)—an evolutionarily ancient system for number. Developmental models of numerical cognition have traditionally assumed that the processing and the acquisition of symbolic numbers (e.g., number words, digits) are deeply rooted in evolutionarily ancient brain systems, called the Parallel Individuation (PI) system (e.g., Carey, 2009a, 2009b), and the Approximate Number System (ANS or called “number sense”; e.g., Dehaene, 2001; Dehaene & Cohen, 1995; Feigenson, Dehaene, & Spelke, 2004; Piazza, 2010) These two systems process the number for a set of items (i.e., non-symbolic quantities) in a qualitatively different way. It has been suggested that probably the (non-symbolic) numerical ratio is a crucial factor, enabling the acquisition of all real numbers

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call