Abstract

Dust event is one of the main environmental problems affecting several countries of the world, and the dust burden is a severe threat to human health, environment, and socio-economic activities. Nevertheless, controlling windblown dust is a major challenge that hitherto has not been effectively overcome. Wind turbines can extract a considerable amount of kinetic energy from wind, reduce wind speed, and increase turbulence in the following wake, but can wind turbine farms increase the settlement of particulate matter during dust events? To examine this question, this study develops a framework based on FLOw Redirection and Induction in Steady State that calculates essential parts of the flow and dust concentration fields in wind farms. Eight different layouts and three wind turbines have been simulated to find the best wind farm arrangement that yields maximum dust deposition. It is found that wind farms, depending on the layout, decrease the wind speed by 8%–14.5%. In the best scenario, wind farms increase PM2.5 deposition by 23.3% and PM10 deposition by 34.2% compared to no wind farm case. Therefore, this study suggests that using wind turbine farms as wind barriers, provided the surface itself is not erodible, can be an effective way to control windblown dust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.