Abstract
This study examines the predictive impact of weather conditions and electricity demand on hourly spot prices of emissions allowances during the first three phases of the European Union Emissions Trading System (EU ETS) (2005–2019). We propose an original methodology for constructing European-scale electricity demand and weather indices and characterize the relationship between those indices and emissions allowances prices by means of an advanced predictive modeling technique (Extreme Gradient Boosting). Empirical findings assert that electricity demand and the weather variables under study were of importance for estimating EUA prices during the first three phases of the EU ETS, with air temperature and electricity demand being most relevant to emissions allowances prices. Conversely, total precipitation and relative humidity proved to be the least relevant variables to the outcome. The results also indicate that the relationship between emissions allowances prices and their weather-related predictors was not linear in the studied period. The paper contributes to the growing body of literature on the structural determinants of carbon prices in the EU ETS and enhances our understanding of the impact of climate and weather variability – in the provision of renewable energy production – on the most prominent market-based measure to reduce CO2 emissions in Europe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.