Abstract
Maps of estimated dust column density in molecular clouds are usually assumed to reliably trace the total gas column density structure. In this work we present results showing a clear discrepancy between the dust and the gas distribution in the Taurus molecular cloud complex. We compute the power spectrum of a 2MASS extinction map of the Taurus region and find it is much shallower than the power spectrum of a 13CO map of the same region previously analyzed. This discrepancy may be explained as the effect of grain growth on the grain extinction efficiency. However, this would require a wide range of maximum grain sizes, which is ruled out based on constraints from the extinction curve and the available grain models. We show that major effects due to CO formation and depletion are also ruled out. Our result may therefore suggest the existence of intrinsic spatial fluctuations of the dust to gas ratio, with amplitude increasing toward smaller scales. Preliminary results of numerical simulations of trajectories of inertial particles in turbulent flows illustrate how the process of clustering of dust grains by the cloud turbulence may lead to observable effects. However, these results cannot be directly applied to large scale supersonic and magnetized turbulence at present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.