Abstract

This paper has two specific goals. The first is to demonstrate that the theorem in Metaphysics Θ 9, 1051a24-27 is not equivalent to Euclid’s Proposition 32 of book I (which contradicts some Aristotelian commentators, such as W. D. Ross, J. L. Heiberg, and T. L. Heith). Agreeing with Henry Mendell’s analysis, I argue that the two theorems are not equivalent, but I offer different reasons for such divergence: I propose a pedagogical-philosophical reason for the Aristotelian theorem being shorter than the Euclidean one (and the previous Aristotelian versions). Aristotle wants to emphasize the deductive procedure as a satisfactory method to discover scientific knowledge. The second objective, opposing some consensus about geometrical deductions/theorems in Aristotle, is to briefly propose that the theorem, exactly as we found it in Metaphysics and without any emendation to the text (therefore opposing Henry Mendell’s suggested amendments), allows the ancient philosopher to demonstrate that universal mathematical knowledge is in potence in geometrical figures. This tentatively proves that Aristotle emphasizes that geometrical deduction is sufficient to actualize mathematical knowledge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.