Abstract

Using the model originally developed by Williams and Folland (J Physiol 586: 113-121, 2008), we determined 1) a "total genotype score" (TGS, from the accumulated combination of the 6 polymorphisms, with a maximum value of "100" for the theoretically optimal polygenic score) in a group of elite power athletes, endurance athletes, and nonathletic controls, and 2) the probability for the occurrence of Spanish individuals with the "perfect" power-oriented profile (i.e., TGS = 100). We analyzed six polymorphism that are candidates to explain individual variations in elite power athletic status or power phenotypes (ACE I/D, ACTN3 R577X, AGT Met235Thr, GDF-8 K153R, IL6 -174 G/C, and NOS3 -786T>C) in 53 elite track and field power athletes (jumpers, sprinters), 100 nonathletic controls, and 100 elite endurance athletes (distance runners and road cyclists) (all Spanish Caucasian males). The mean TGS was significantly higher in power athletes (70.8 +/- 17.3) compared with endurance athletes (60.4 +/- 15.9; P < 0.001) and controls (63.3 +/- 13.2; P = 0.012), whereas it did not differ between the latter two groups (P = 0.366). A total of five power athletes (9.4%, all sprinters) had a theoretically "optimal" TGS of 100 vs. 0 subjects in the other two groups. The probability of a Spanish individual possessing a theoretically optimal polygenic profile for up to the six candidate polymorphisms we studied was very small, i.e., approximately 0.2% (or 1 in 500 Spanish individuals). We have identified a polygenic profile that allows us, at least partly, to distinguish elite power athletes from both endurance athletes and nonathletic population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call