Abstract

David Sherry's pioneering work on the neuroecology of spatial memory has three characteristics that could inspire studies on other cognitive processes: it was grounded in a robust prior literature in psychology and neuroscience; it identified several natural history contexts in which repeated independent evolution of spatial memory differences had occurred in different clades; it involved a precise cognitive ability with a precise neural substrate. We discuss the application of these three principles to a more domain-general trait-innovation. We argue that targeting the caudolateral nidopallium and its connected areas, favoring problem-solving over reversal learning as an experimental assay, and focusing on situations that involve environmental change, such as urbanization and invasion, can help the study of innovation progress, like the field of spatial memory has since 1989.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.