Abstract
The purpose of this study was to examine the suitability of a single ramp incremental test to predict critical power (CP) and W' . We hypothesized that CP would correspond to the corrected power output (PO) at the respiratory compensation point (RCP) and W' would be calculable from the work done above RCP. One hundred fifty-three healthy young people (26 ± 4 yr, 51.4 ± 7.6 mL·min -1 ·kg -1 ) performed a maximal ramp test (20, 25, or 30 W·min -1 ), followed by three to five constant load trials to determine CP and W' . CP and W' were estimated using a "best individual fit" approach, selecting the mathematical model with the smallest total error. The RCP was identified by means of gas exchange analysis and then translated into its appropriate PO by applying a correction strategy in order to account for the gap in the V̇O 2 /PO relationship between ramp and constant load exercise. We evaluated the agreement between CP and the PO at RCP, and between W' and the total work done above CP ( W'RAMP > CP ) and above RCP ( W'RAMP > RCP ) during the ramp test. The CP was significantly higher than the PO at RCP (Δ = 8 ± 16 W, P < 0.001). W'RAMP > CP was significantly lower than W' (Δ = 1.9 ± 3.3 kJ, P < 0.001), whereas W'RAMP > RCP and W' did not differ from each other (Δ = -0.6 ± 5.8 kJ, P = 0.21). Despite the fact that CP and RCP occurred in close proximity, the estimation of W' from ramp exercise may be problematic given the likelihood of underestimation and considering the large variability. Therefore, we do not recommend the interchangeable use of CP and W' values derived from constant load versus ramp exercise, in particular, when the goal is to obtain accurate estimates or to predict performance capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.