Abstract

DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms.

Highlights

  • Viral haemorrhagic septicaemia virus (VHSV) is a negative-sense, single-stranded RNA virus, which belongs to the Novirhabdovirus genus within the Rhabdoviridae family [1]

  • The aim of this work was to determine whether VHSV within repetitive passages under the selective pressure of DNA vaccine-induced immunity, would be able to develop mutants that could escape from the early and late protective mechanisms induced by the vaccine, and from neutralizing serum antibodies induced in DNA-vaccinated rainbow trout

  • To test the ability of the virus to bypass the early protection induced by the DNA vaccine, we passaged VHSV in rainbow trout vaccinated 1 week before inoculation with virus

Read more

Summary

Introduction

Viral haemorrhagic septicaemia virus (VHSV) is a negative-sense, single-stranded RNA virus, which belongs to the Novirhabdovirus genus within the Rhabdoviridae family [1]. VHSV is the causative agent of the viral haemorrhagic septicaemia (VHS), a serious and economically important disease of farmed rainbow trout (Oncorhynchus mykiss) in Europe, causing high mortalities in all fish stages [2]. No commercial vaccine against VHS is available. Several vaccination strategies have been tested to control this disease, among them live attenuated vaccines, inactivated vaccines, and recombinant protein vaccines, but with limited efficacy or compromised safety aspects [3, 4]. DNA vaccines have shown promising results by consistently.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call