Abstract

Star formation is governed by the interplay between gravity and turbulence in most of molecular clouds. Recent theoretical works assume that dense gas, whose column density is above a critical value in the column density probability distribution function (N-PDF), where gravity starts to overcome turbulence, becomes star-forming gas and will collapse to form stars. However, these high-density gases will include some very turbulent areas in the clouds. Will these dense but turbulent gases also form stars? We test this scenario in Ophiuchus molecular cloud using N-PDF analysis and find that at least in some regions, the turbulent, dense gas is not forming stars. We identified two isolated high-density structures in Ophiuchus, which are gravitationally unbound and show no sign of star formation. Their high densities may come from turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.