Abstract
We consider a metapopulation version of the Schelling model of segregation over several complex networks and lattices. We show that the segregation process is topology independent and hence it is intrinsic to the individual tolerance. The role of the topology is to fix the places where the segregation patterns emerge. In addition we address the question of the time evolution of the segregation clusters, resulting from different dynamical regimes of a coarsening process, as a function of the tolerance parameter. We show that the underlying topology may alter the early stage of the coarsening process, once large values of the tolerance are used, while for lower ones a different mechanism is at work and it results to be topology independent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.