Abstract

We investigate whether young neutron stars with fallback disks can produce anomalous X-ray pulsars (AXPs) within timescales indicated by the ages of associated supernova remnants. The system passes through a propeller stage before emerging as an AXP or a radio pulsar. The evolution of the disk is described by a diffusion equation that has self-similar solutions with either angular momentum or total mass of the disk conserved. We associate these two types of solutions with accretor and propeller regimes, respectively. Our numerical calculations of thin-disk models with changing inner radius take into account the supercritical accretion at the early stages and electron scattering and bound-free opacities with rich metal content. Our results show that, assuming a fraction of the mass inflow is accreted onto the neutron star, the fallback disk scenario can produce AXPs for acceptable parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.