Abstract

PurposeThis paper aims to investigate how effectively the value at risk (VaR) estimated using the student‐t distribution captures the market risk.Design/methodology/approachTwo alternative VaR models, VaR‐t and VaR‐x models, are presented and compared with the benchmark model (VaR‐n model). In this study, we consider the Student‐t distribution as a fit to the empirical distribution for estimating the VaR measure, namely, VaR‐t method. Since the Student‐t distribution is criticized for its inability to capture the asymmetry of distribution of asset returns, we use the extreme value theory (EVT)‐based model, VaR‐x model, to take into account the asymmetry of distribution of asset returns. In addition, two different approaches, excess‐kurtosis and tail‐index techniques, for determining the degrees of freedom of the Student‐t distribution in VaR estimation are introduced.FindingsThe main finding of the study is that using the student‐t distribution for estimating VaR can improve the VaR estimation and offer accurate VaR estimates, particularly when tail index technique is used to determine the degrees of freedom and the confidence level exceeds 98.5 percent.Originality/valueThe main value is to demonstrate in detail how well the student‐t distribution behaves in estimating VaR measure for stock market index. Moreover, this study illustrates the easy process for determining the degrees of freedom of the student‐t, which is required in VaR estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.