Abstract
The paper addresses possible ambiguities in the determination of the state of platinum species by the stretching frequency of a CO probe, which is a common technique for characterization of platinum-containing catalytic systems. We present a comprehensive comparison of the available experimental data with our theoretical modeling (density functional) results of pertinent systems - platinum surfaces, nanoparticles and clusters as well as reduced or oxidized platinum moieties on a ceria support. Our results for CO adsorbed on-top on metallic Pt(0), with C-O vibrational frequencies in the region 2018-2077 cm(-1), suggest that a decrease of the coordination number of the platinum atom, to which CO is bound, by one lowers the CO frequency by about 7 cm(-1). This trend corroborates the Kappers-van der Maas correlation derived from the analysis of the experimental stretching frequency of CO adsorbed on platinum-containing samples on different supports. We also analyzed the effect of the charge of platinum species on the CO frequency. Based on the calculated vibrational frequencies of CO in various model systems, we concluded that the actual state of the platinum species may be mistaken based only on the measured value of the C-O vibrational frequency due to overlapping regions of frequencies corresponding to different types of species. In order to identify the actual state of platinum species one has to combine this powerful technique with other approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.