Abstract
A concern with the initiation of totally endoscopic robotic mitral valve repair (TERMR) programs has been the risk for the learning curve. To minimize this risk, we initiated a TERMR program with a defined team and structured learning approach before clinical implementation. A dedicated team (two surgeons, one cardiac anesthesiologist, one perfusionist, and two nurses) was trained with clinical scenarios, simulations, wet laboratories, and "expert" observation for 3 months. This team then performed a series of TERMRs of varying complexity. Thirty-two isolated TERMRs were performed during the first programmatic year. All operations included mitral valve repair, left atrial appendage exclusion, and annuloplasty device implantation. Additional procedures included leaflet resection, neochordae insertion, atrial ablation, and papillary muscle shortening. Longer clamp times were associated with number of neochordae (P < 0.01), papillary muscle procedures (P < 0.01), and leaflet resection (P = 0.06). Sequential case number had no impact on cross-clamp time (P = 0.3). Analysis of nonclamp time demonstrated a 71.3% learning percentage (P < 0.01; ie, 28.7% reduction in nonclamp time with each doubling of case number). There were no hospital deaths or incidences of stroke, myocardial infarction, unplanned reoperation, respiratory failure, or renal failure. Median length of stay was 4 days. All patients were discharged home. Totally endoscopic robotic mitral valve repair can be safely performed after a pretraining regimen with emphasis on experts' current practice and team training. After a pretraining regimen, cross-clamp times were not subject to learning curve phenomena but were dependent on procedural complexity. Nonclamp times were associated with a short learning curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.