Abstract

Household waste contributes significantly to global greenhouse gas (GHG) emissions, and waste classification is crucial for reducing emissions. This study focuses on Beijing and utilizes life cycle assessment (LCA) and material flow analysis (MFA) to calculate GHG emissions in waste management systems and quantify emission reduction potential of different measures. The results show that net emissions from the classification system in 2021 are 116.77 kg CO2-eq/t waste, reducing 61.82 % compared to the traditional mixed collection and transportation system. Waste volume, classification efficiency, and treatment strategies are the primary factors affecting emissions in classification systems. Recycling is identified as effective treatment methods. Three scenarios are designed to explore emission pathway of the system toward 2060. In the business-as-usual (BAU) Scenario, emissions will continue to grow to 108.57 × 104 t CO2-eq/yr in 2060. In the Classification Efficiency Scenario and the Comprehensive Scenario, emissions in 2060 will be cut to −177.26 × 104 t CO2-eq/yr and −702.00 × 104 t CO2-eq/yr, respectively. These results underscore the critical role of waste classification and recycling in mitigating the negative impacts of increasing waste volume. By 2060, combining waste classification with recycling can offset emissions by 803.51 × 104 t CO2-eq/yr, contributing 99 % to emission reduction potential. Improving classification efficiency and recycling ratio are key measures for achieving this reduction goal. Meanwhile, treatment methods and technologies should prioritize classification and recycling. Aiming at carbon neutrality, the study proposes several recommendations to improve classification systems, including enhancing classification efficiency, optimizing treatment facilities and strategies, and establishing recycling and utilization systems, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call