Abstract
Abstract. The most recent comprehensive model (CM4) of the geomagnetic field (Sabaka et al., 2004) has been used in conjunction with geomagnetic ground observatory station data to analyse and study the geomagnetic diurnal variation field for days away from quiet time and the CM4 prediction for these times. Even though much has been learnt about many components of the geomagnetic field, the diurnal variation field behaviour for days away from quiet time (moderately disturbed time) has not been intensively studied. Consequently, we analyse these, and the predictive ability of the CM4 for ground variations, and whether the CM4 prediction of the diurnal variation (whether at quiet time or away from quiet time) is valid outside the period of reference that from which the data were used in modelling. In carrying out the study, we compared the observatory station data and the CM4 prediction directly. Using the CM4 code, well-characterised internal and magnetospheric components were subtracted from the data, plots and global maps of the residual field generated and then compared with the CM4 to see how well the model performed in predicting the data at moderately disturbed time (Kp ≤ 5). The results show that the CM4 is valid and produces useful predictions outside the period covering the timespan of the model and during moderately disturbed time, despite the lack of active data in the original model dataset. The model predictability of the data increases as we move to higher spherical harmonic degree truncation, as the model–data misfit is reduced, but with increased roughness as a result of small-scale features incorporated. The observed results show that this relationship between the increase in spherical harmonic degree truncation and reduction in misfit can be restricted by data quality or quantity and global coverage or spread.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Annales Geophysicae
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.