Abstract

The purpose of this study is to determine whether second-order texture analysis can be used to distinguish lipid-poor adenomas from malignant adrenal nodules on unenhanced CT, contrast-enhanced CT (CECT), and chemical-shift MRI. In this retrospective study, 23 adrenal nodules (15 lipid-poor adenomas and eight adrenal malignancies) in 20 patients (nine female patients and 11 male patients; mean age, 59 years [range, 15-80 years]) were assessed. All patients underwent unenhanced CT, CECT, and chemical-shift MRI. Twenty-one second-order texture features from the gray-level cooccurrence matrix and gray-level run-length matrix were calculated in 3D. The mean values for 21 texture features and four imaging features (lesion size, unenhanced CT attenuation, CECT attenuation, and signal intensity index) were compared using a t test. The diagnostic performance of texture analysis versus imaging features was also compared using AUC values. Multivariate logistic regression models to predict malignancy were constructed for texture analysis and imaging features. Lesion size, unenhanced CT attenuation, and the signal intensity index showed significant differences between benign and malignant adrenal nodules. No significant difference was seen for CECT attenuation. Eighteen of 21 CECT texture features and nine of 21 unenhanced CT texture features revealed significant differences between benign and malignant adrenal nodules. CECT texture features (mean AUC value, 0.80) performed better than CECT attenuation (mean AUC value, 0.60). Multivariate logistic regression models showed that CECT texture features, chemical-shift MRI texture features, and imaging features were predictive of malignancy. Texture analysis has a potential role in distinguishing benign from malignant adrenal nodules on CECT and may decrease the need for additional imaging studies in the workup of incidentally discovered adrenal nodules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.