Abstract

A general branching process model is proposed to describe the shortening of telomeres in eukaryotic chromosomes. The model is flexible and incorporates many special cases to be found in the literature. In particular, we show how telomere shortening can give rise to sigmoidal growth curves, an idea first expressed by Portugal et al. [A computational model for telomere-dependent cell-replicative aging, BioSystems 91 (2008), pp. 262–267]. We also demonstrate how other types of growth curves arise if telomere shortening is mitigated by other cellular processes. We compare our results with published data sets from the biological literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call