Abstract

The revolution of physical structure is highly significant for future software- defined vehicles (SDV). Active structural transformation is a promising feature of the next generation of vehicle physical structure. It can enhance the dynamic performance of vehicles, thus providing safer and more comfortable ride experiences, such as the capability to avoid rollover in critical situations. Based on the active structural transformation technology, this study proposes a novel approach to improve the dynamic performance of a vehicle. The first analytical motion model of a vehicle with active structural transformation capability is established. Then, a multi-objective optimization problem with the adjustable parameters as design variables is abstracted and solved with an innovative scenario-specified optimization method. Simulation results un- der different driving scenarios revealed that the active transformable vehicle applying the proposed method could significantly improve the handling sta- bility without sacrificing the ride comfort, compared with a conventional vehicle with a fixed structure. The proposed method pipeline is defined by the software and supported by the hardware. It fully embodies the characteristics of SDV, and inspires the improvement of multiple types of vehicle performance based on the concept of “being defined by software” and the revolution of the physical structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.