Abstract
Medications for attention deficit hyperactivity disorder (ADHD) are only partially effective. Ideally, new treatment targets would derive from a known pathophysiology. Such data are not available for ADHD. We combine evidence for new etiologic pathways with bioinformatics data to assess the possibility that existing drugs might be repositioning for treating ADHD. We use this approach to determine if prior data implicating the sodium/hydrogen exchanger 9 gene (SLC9A9) in ADHD implicate sodium/hydrogen exchange (NHE) inhibitors as potential treatments. We assessed the potential for repositioning by assessing the similarity of drug-protein binding profiles between NHE inhibitors and drugs known to treat ADHD using the Drug Repositioning and Adverse Reaction via Chemical-Protein Interactome server. NHE9 shows a high degree of amino acid similarity between NHE inhibitor sensitive NHEs in the region of the NHE inhibitor recognition site defined for NHE1. We found high correlations in drug-protein binding profiles among most ADHD drugs. The drug-protein binding profiles of some NHE inhibitors were highly correlated with ADHD drugs whereas the profiles for a control set of nonsteroidal anti-inflammatory drugs (NSAIDs) were not. Further experimental work should evaluate if NHE inhibitors are suitable for treating ADHD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Medical Genetics Part B: Neuropsychiatric Genetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.