Abstract

Small islands in the vicinity of the mainland are widely believed to offer protection from wind and waves and thus coastal communities have been developed in mainland areas behind small islands. However, whether they offer protection from tsunamis is unclear. Do islands act as natural barriers? Recent post-tsunami survey data, supported by numerical simulations, reveal that the run-up on coastal areas behind small islands was significantly higher than on neighbouring locations not affected by the presence of the islands. To study the conditions of this run-up amplification, we solve numerically the nonlinear shallow water equations. We use the simplified geometry of a conical island sitting on a flat seafloor in front of a uniform sloping beach. By doing so, the experimental set-up is defined by five physical parameters, namely the island slope, the beach slope, the water depth, the distance between the island and the plane beach and the incoming wavelength, while the wave height was kept fixed. The objective is to find the maximum run-up amplification with the least number of simulations. To achieve this goal, we build an emulator based on Gaussian Processes to guide the selection of the query points in the parameter space. We thus reduce substantially the computations required to identify the run-up amplification. Our results show that the island acts as a focusing lens for energy and amplifies the run-up along the coastline behind its lee side, instead of protecting it, as popular beliefs suggest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.