Abstract
It has become increasingly apparent that traditional hydrodynamical simulations of galaxy clusters are unable to reproduce the observed properties of galaxy clusters, in particular overpredicting the mass corresponding to a given cluster temperature. Such overestimation may lead to systematic errors in results using galaxy clusters as cosmological probes, such as constraints on the density perturbation normalization σ8. In this paper we demonstrate that inclusion of additional gas physics, namely radiative cooling and a possible pre-heating of gas prior to cluster formation, is able to bring the temperature—mass relation in the innermost parts of clusters into good agreement with recent determinations by Allen, Schmidt & Fabian using Chandra data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.