Abstract

BackgroundForward genetic screens are a powerful approach for identifying the genes contributing to a trait of interest. However, mutants arising in genes already known can obscure the identification of new genes contributing to the trait. Here, we describe a strategy called Candidate gene-Sequencing (Can-Seq) for rapidly identifying and filtering out mutants carrying new alleles of known and candidate genes.ResultsWe carried out a forward genetic screen and identified 40 independent Arabidopsis mutants with defects in systemic spreading of RNA interference (RNAi), or more specifically in root-to-shoot transmission of post-transcriptional gene silencing (rtp). To classify the mutants as either representing a new allele of a known or candidate gene versus carrying a mutation in an undiscovered gene, bulk genomic DNA from up to 23 independent mutants was used as template to amplify a collection of 47 known or candidate genes. These amplified sequences were combined into Can-Seq libraries and deep sequenced. Subsequently, mutations in the known and candidate genes were identified using a custom Snakemake script (https://github.com/Carroll-Lab/can_seq), and PCR zygosity tests were then designed and used to identify the individual mutants carrying each mutation. Using this approach, we showed that 28 of the 40 rtp mutants carried homozygous nonsense, missense or splice site mutations in one or more of the 47 known or candidate genes. We conducted complementation tests to demonstrate that several of the candidate mutations were responsible for the rtp defect. Importantly, by exclusion, the Can-Seq pipeline also identified rtp mutants that did not carry a causative mutation in any of the 47 known and candidate genes, and these mutants represent an undiscovered gene(s) required for systemic RNAi.ConclusionsCan-Seq offers an accurate, cost-effective method for classifying new mutants into known versus unknown genes. It has several advantages over existing genetic and DNA sequencing approaches that are currently being used in forward genetic screens for gene discovery. Using Can-Seq in conjunction with map-based gene cloning is a cost-effective approach towards identifying the full complement of genes contributing to a trait of interest.

Highlights

  • Forward genetic screens are a powerful approach for identifying the genes contributing to a trait of interest

  • Forward genetic screen for rtp mutants To enable a forward genetic screen for mutants with defects in systemic RNA interference (RNAi), we developed a green fluorescent protein (GFP) reporter line in Arabidopsis called 10027-3, which mimics the phenotype of root-to-shoot, graft-transmissible post-transcriptional gene silencing (PTGS) [11]

  • PTGS of GFP is initiated by the expression of a GFP-specific inverted repeat in the root tip as it forms during embryogenesis [11]

Read more

Summary

Introduction

Forward genetic screens are a powerful approach for identifying the genes contributing to a trait of interest. Mutants arising in genes already known can obscure the identification of new genes contributing to the trait. Complementation tests, which involve the crossing of all independent mutants with each other, followed by progeny analysis, can be used to identify groups of allelic mutants, i.e., mutants that carry an independent mutation in the same gene. For most traits, uncovering all of the genes involved requires the characterization of a large number of mutants, and the number of crosses required for the complementation tests can be prohibitive. Forward genetic screens are strongly biased towards the identification of large protein-coding genes, making it difficult to identify mutations in small genes that are contributing to the trait of interest. The recent discovery of large numbers of genes encoding microRNAs [5] or small peptides [6] emphasizes this bias against the identification of small genes in forward genetic screens

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.