Abstract
Recently, contrastive learning has largely advanced the progress of unsupervised visual representation learning. Pre-trained on ImageNet, some self-supervised algorithms reported higher transfer learning performance compared to fully-supervised methods, seeming to deliver the message that human labels hardly contribute to learning transferrable visual features. In this paper, we defend the usefulness of semantic labels but point out that fully-supervised and self-supervised methods are pursuing different kinds of features. To alleviate this issue, we present a new algorithm named Supervised Contrastive Adjustment in Neighborhood (SCAN) that maximally prevents the semantic guidance from damaging the appearance feature embedding. In a series of downstream tasks, SCAN achieves superior performance compared to previous fully-supervised and self-supervised methods, and sometimes the gain is significant. More importantly, our study reveals that semantic labels are useful in assisting self-supervised methods, opening a new direction for the community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.