Abstract

The ageing process and several health conditions may increase tremor and reduce force steadiness and dexterity, which can severely impact on function and quality of life. Resistance training can evoke a range of neuromuscular adaptions that may significantly reduce tremor and/or increase force steadiness and/or dexterity in older adults, irrespective of their health condition. The objective of this study was to systematically review the literature to determine if a minimum of 4weeks' resistance training can reduce postural tremor and improve force steadiness and/or dexterity in older adults, defined as aged 65years and over. An electronic search using Ovid, CINAHL, SPORTDiscus and EMBASE was performed. Risk of bias was assessed using the Cochrane Risk of Bias Tool. Fourteen studies met the eligibility criteria, including six randomised controlled trials and two quasi-randomised controlled trials. All eight studies that recruited healthy older adults reported significant reductions in postural tremor and/or improvements in force steadiness and dexterity. Five out of seven studies that examined older adults with a particular health condition reported some improvements in force steadiness and/or dexterity. Specifically, significant benefits were observed for older adults with chronic obstructive pulmonary disease and essential tremor; however, small or no changes were observed for individuals with osteoarthritis or stroke. Resistance training is a non-pharmacological treatment that can reduce tremor and improve force steadiness and dexterity in a variety of older adult populations. Future research should employ randomised controlled trials with larger sample sizes, better describe training programme methods, and align exercise prescription to current recommendations for older adults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.