Abstract

This study explores whether positioning systems are a viable alternative to timing gates when it comes to measuring sprint times in ice hockey. We compared the results of a single-beam timing gate (Brower Timing) with the results of the Iceberg optical positioning system (Optical) and two radio-based positioning systems provided by InMotio (Radio 1) and Kinexon (Radio 2). The testing protocol consisted of two 40 m linear sprints, where we measured sprint times for a 11 m subsection (Linear Sprint 11), and a shuttle run (Shuttle Total), including five 14 m sprints. The exercises were performed by six top-level U19 field players in regular ice hockey equipment on ice. We quantified the difference between measured sprint times e.g., by Mean Absolute Error (MAE) (s) and Intra Class Correlation (ICC). The usefulness of positioning systems was evaluated by using a Coefficient of Usefulness (CU), which was defined as the quotient of the Smallest Worthwhile Change (SWC) divided by the Typical Error (both in s). Results showed that radio-based systems had a higher accuracy compared to the optical system. This concerned Linear Sprint 11 (MAEOptical = 0.16, MAERadio1 = 0.01, MAERadio2 = 0.01, ICCOptical = 0.38, ICCRadio1 = 0.98, ICCRadio2 = 0.99) as well as Shuttle Total (MAEOptical = 0.07, MAERadio1 = 0.02, MAERadio2 = 0.02, ICCOptical = 0.99; ICCRadio1 = 1.0, ICCRadio2 = 1.0). In Shuttle Total, all systems were able to measure a SWC of 0.10 s with a probability of >99% in a single trial (CUOptical = 4.6, CURadio1 = 6.5, CURadio2 = 5.1). In Linear Sprint 11 an SWC of 0.01 s might have been masked or erroneously detected where there were none due to measurement noise (CUOptical = 0.6, CURadio1 = 1.0, CURadio2 = 1.0). Similar results were found for the turning subsection of the shuttle run (CUOptical = 0.6, CURadio1 = 0.5, CURadio2 = 0.5). All systems were able to detect an SWC higher than 0.04 s with a probability of at least 75%. We conclude that the tested positioning systems may in fact offer a workable alternative to timing gates for measuring sprints times in ice hockey over long distances like shuttle runs. Limitations occur when testing changes/differences in performance over very short distances like an 11 m sprint, or when intermediate times are taken immediately after considerable changes of direction or speed.

Highlights

  • Performance tests are an important component of training (Wisloff, 2004; Krustrup et al, 2005)

  • Positional data was simultaneously collected by three socalled Electronic Performance and Training Systems (EPTS): the Iceberg optical system (Iceberg Hockey Analytics Corp., Toronto, Canada) (Optical), which was specially developed for ice hockey, and the two radio-based systems manufactured by InMotio (Inmotiotec GmbH, Regau, Austria) (Radio 1) and Kinexon (Kinexon GmbH, Munich, Germany) (Radio 2)

  • In Linear Sprint 11 (F = 416.23, p < 0.001), Shuttle Total (F = 9.7, p < 0.05), Shuttle Sprint (F = 74.94, p < 0.001) and Shuttle Turn (F = 71.07, p < 0.001), the Mean Absolute Error (MAE) was significantly higher for the optical system compared to the radio-based systems (Table 1)

Read more

Summary

Introduction

Performance tests are an important component of training (Wisloff, 2004; Krustrup et al, 2005). They can be used to identify strengths and weaknesses of athletes and to draw conclusions for training and competition (Geithner et al, 2006; Gabbett et al, 2008; Karcher and Buchheit, 2014; Massuca et al, 2015; Suarez-Arrones et al, 2015; La Monica et al, 2016). In ice hockey, sprinting speed is – besides strength and endurance – an important component of physical performance (Bracko, 2001; Roczniok et al, 2016). The results of the different strength, endurance, coordination and speed tests (e.g., bench press, squat-jumps, Wingate test, balance board, and 40-yd sprint) are used to predict their prospects for a professional career

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.