Abstract

The material most widely used in orthopaedics is hydroxyapatite (HA), anyway many differences are still present between synthetic HA and biological HA. The aim of this study was to compare adhesion, proliferation and differentiation of human osteoblast-like cells on hydroxyapatite discs with different porosity and on plastic cultures. Human osteoblast-like cells were isolated from 4 young patients (mean age 24.5 years old), treated with collagenase and maintained in Dulbecco’s modified essential medium-10% fetal calf serum. Cells were plated on hydroxyapatite discs with 3 different porosities (35%, 35–55% e 55%) and on plastic cultures used as control. The proliferation was determined by the MTT colorimetric method, and alkaline phosphatase (ALP) activity was measured by a spettrophotometric method. Type I collagen and osteonectin production were demonstrated with fluorescence microscopy and osteoblast adhesion was studied by scanning electron microscopic (SEM) analysis. Results were analysed by one-way analysis of variance (ANOVA). Osteoblast proliferation on HA was three- to six-fold lower then on plastic. At 28 days, 2141 (± 350) cells/well grew on the most porous disks, with highly significant differences from controls. The ALP production was 2–3 fold lower on HA than on plastic. In the most porous disks, the mean ALP activity was of 2.95 (± 0.07) UI/well after 28 days, higher than in the other two groups. The type-I collagen and the osteonectin fluorescence reaction evidenced a cytoplasmic and a matrix labeling on HA at different porosities. SEM analysis showed osteoblasts with a flattened morphology and only few of them were metabolic active. At 21 and 28 days, proliferation rate and ALP activity on the three HA cultures were significantly different (p

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call