Abstract

Triclosan (TCS) has been widely employed as active ingredient in household products and has received attention for its hepatotoxicity, endocrine disruption and disturbance on immune function. Polylactic acid (PLA) has been highlighted as an alternative biodegradable microplastic, and the knowledge about the adsorption affinity towards TCS is limited. In this study, the ability to act as carrier of TCS by PLA and non-biodegradable microplastics, including polystyrene (PS), polyvinyl chloride (PVC) and polyethylene (PE) with different particle sizes were explored. The influence factors (e.g., dosage, pH and salinity), adsorption kinetics and isotherms were also investigated. Batch experiment results indicated that the TCS adsorption onto PLA and non-biodegradable microplastics exhibited a pronounced pH-dependent pattern (pH of 4, 7 and 10), and the adsorption capacity decreased gradually as pH increased. Furthermore, the adsorption capacity of TCS on PS, PVC and PE decreased as salinity increased from 0 to 3.5%, while no significant inhibition for the sorption capacity of PLA was observed. The adsorption kinetic data of TCS was best fitted with the pseudo-second order model. The Freundlich model with R2 (0.999) was suitable to describe the adsorption isotherms of TCS on PLA, while the isotherms data of TCS on PS, PVC and PE was fitted by linear and Freundlich model. The higher adsorption capacity of PLA (38.6 mg g−1) compares to those of PS, PVC and PE (31.3, 11.4 and 9.64 mg g−1, respectively), illustrated by the fact that the physicochemical properties of microplastics have a noticeable impact on adsorption process, and the biodegradable PLA is a stronger vector than the non-biodegradable microplastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.