Abstract

Many ordinary differential equation (ODE) models have been introduced to replace linear regression models for inferring gene regulatory relationships from time-course gene expression data. But, since the observed data are usually not direct measurements of the gene products or there is an unknown time lag in gene regulation, it is problematic to directly apply traditional ODE models or linear regression models. We introduce a lagged ODE model to infer lagged gene regulatory relationships from time-course measurements, which are modeled as linear transformation of the gene products. A time-course microarray dataset from a yeast cell-cycle study is used for simulation assessment of the methods and real data analysis. The results show that our method, by considering both time lag and measurement scaling, performs much better than other linear and ODE models. It indicates the necessity of explicitly modeling the time lag and measurement scaling in ODE gene regulatory models. R code is available at https://www.sta.cuhk.edu.hk/xfan/share/lagODE.zip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.