Abstract

Despite detailed studies on nitroxylcobalamin (CblNO) formation, the possible intracellular generation of CblNO via reduction of nitrocobalamin (CblNO2) remains questionable. To study this further, spectroscopic studies on the reaction of CblNO2 with the intracellular antioxidant ascorbic acid (HAsc−) were performed in aqueous solution at pH < 5.0. It was found that nitroxylcobalamin is the final product of this interaction, which is not just a simple reaction but a rather complex chemical process. We clearly show that an excess of nitrite suppresses the formation of CblNO, from which it follows that ascorbic acid cannot reduce coordinated nitrite. We propose that under the influence of ascorbic acid, nitrocobalamin is reduced to Cbl(II) and nitric oxide (·NO), which can subsequently react rapidly to form CblNO. It was further shown that this system requires anaerobic conditions as a result of the rapid oxidation of both Cbl(II) and CblNO.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.