Abstract

The formation of dolomite in modern peritidal environments is linked to the degradation of buried microbial mats, with complexation of Ca and Mg by extracellular polymeric substances (EPSs) and alkalinity generation through organic carbon respiration facilitating the nucleation of dolomite precursors. In the past two decades, microbial sulfate reduction, methanogenesis, and methanotrophy have all been considered as potential drivers of the nucleation process, but it remains unclear why dolomite formation could not also occur in suboxic sediments where abundant alkalinity is produced by processes linked to Mn(IV) and/or Fe(III) reduction coupled with the diffusion and reoxidation of reduced sulfur species. Here we report the interstitial occurrence of spheroidal aggregates of nanometer-scale Ca-rich dolomite rhombohedra within suboxic sediments associated with remnant microbial mats that developed in the peritidal zone of the Archipelago Los Roques, Venezuela. Multiple analytical tools, including EPMA, ICP-MS, synchrotron-based XRF and XRD, and spatially resolved XANES microanalyses, show that the dolomite-cemented interval exhibits depleted bulk iron concentrations, but is interstitially enriched in Mn and elemental sulfur (S0). Manganese occurs in several oxidation states, indicating that the dolomite-cemented interval was the locus of complex biological redox transformations characterized by coupled Mn and S cycling. The tight correspondence between sedimentary Mn and MgCO3 concentrations further hints at a direct role for Mn during dolomitization. While additional studies are required to confirm its relevance in natural settings, we propose a model by which coupled Mn–S redox cycling may promote alkalinity generation and thus dolomite formation in manner similar to, or even more efficiently, than bacterial sulfate reduction alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.