Abstract

Abdominal ischemia-reperfusion (I/R) is known to cause both structural and functional damage to sciatic nerve which is related to the oxidative stress. We investigated the protective effects of mitochondria-targeted antioxidant (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) on ischemia-reperfusion-induced nerve damage by using the conduction velocity distribution (CVD) calculations from in vitro compound nerve action potential (CNAP) recordings from rat sciatic nerve. Adult male Wistar albino rats were divided into three groups. The IR and IR + MT groups had aortic cross-clamping for 1h followed by 2h reperfusion, while SHAM group had the same procedure without cross-clamping. IR + MT group received 0.7mg/kg/day MitoTEMPO injection for 28days before I/R, while other groups received vehicle alone. Ischemia-reperfusion resulted in a significant decrease (p < .05) in maximum depolarizations (mV), areas (mV.ms), and maximum and minimum upstroke velocities (mV/ms) of CNAPs, while injection of MitoTEMPO showed a complete protective effect on these impairments. The histograms for CVD showed that I/R blocked the contribution of fast-conducting fibers (> 60m/s). MitoTEMPO prevented that blockage and caused a shift in the CVD. Functional nerve damage caused by I/R can be prevented by MitoTEMPO, which can enter mitochondria, the main source of reactive oxygen species (ROS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.