Abstract
Bankruptcy prediction has received a growing interest in corporate finance and risk management recently. Although numerous studies in the literature have dealt with various statistical and artificial intelligence classifiers, their performance in credit risk forecasting needs to be further scrutinized compared to other methods. In the spirit of Chen, Härdle and Moro (2011, Quantitative Finance), we design an empirical study to assess the effectiveness of various machine learning topologies trained with big data approaches and qualitative, rather than quantitative, information as input variables. The experimental results from a ten-fold cross-validation methodology demonstrate that a generalized regression neural topology yields an accuracy measurement of 99.96%, a sensitivity measure of 99.91% and specificity of 100%. Indeed, this specific model outperformed multi-layer back-propagation networks, probabilistic neural networks, radial basis functions and regression trees, as well as other advanced classifiers. The utilization of advanced nonlinear classifiers based on big data methodologies and machine learning training generates outperforming results compared to traditional methods for bankruptcy forecasting and risk measurement.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.