Abstract

Despite of increased interest in the application of miniature microplasma atomic spectrometry for environmental analytical chemistry, the amenable element detection range is limited to some metal elements and carbon due to it low power consumption. In this work, the generation of silicon atomic emission (251.6 nm and 288.2 nm) from the organosiloxanes was found possible in a low-temperature, low-power, and compact point discharge. Consequence, a tiny point discharge silicon optical emission spectrometer (μPD-OES) was exploited, and used as a novel GC detector for the determination of various cyclic volatile methyl siloxanes (cVMSs). Under the optimized conditions, the developed system provided limits of detection (LODs) of 0.2 mg L−1, 0.04 mg L−1, 0.03 mg L−1 and 0.02 mg L−1 of Si for hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane and dodecamethylcyclohexasiloxane, respectively. Meanwhile, relative standard deviations (RSDs) of better than 2.3% were obtained. In contrast to gas chromatography mass spectrometer, GC-μPD-OES significantly simplifies the experimental setup with low power consumption and a miniature configuration. As far as we know, this work reports for the first time that silicon atomic emission can be generated in such low temperature microplasma. The accuracy of this system was validated by determining cVMSs in five daily-used shampoo samples collected from retail store, providing satisfactory recoveries (84%–114%) and excellent agreement with values determined by GC-MS at the 95% confidence level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.