Abstract

Mycotoxins are fungal metabolites with pharmacological activities that have been utilized in the production of antibiotics, growth promoters, and other classes of drugs. Some mycotoxins have been developed as biological and chemical warfare agents. Bombs and ballistic missiles loaded with aflatoxin were stockpiled and may have been deployed by Iraq during the first Gulf War. In light of the excess incidence of amyotrophic lateral sclerosis (ALS) in veterans from Operation Desert Storm, the potential for delayed neurotoxic effects of low doses of mycotoxins should not be overlooked. Ochratoxin-A (OTA) is a common mycotoxin with complex mechanisms of action, similar to that of the aflatoxins. Acute administration of OTA at non-lethal doses (10% of the LD 50) have been shown to increase oxidative DNA damage in brain up to 72 h, with peak effects noted at 24 h in midbrain (MB), caudate/putamen (CP) and hippocampus (HP). Levels of dopamine (DA) and its metabolites in the striatum (e.g., CP) were shown to be decreased in a dose-dependent manner. The present study focused on the effects of chronic low dose OTA exposure on regional brain oxidative stress and striatal DA metabolism. Continuous administration of low doses of OTA with implanted subcutaneous Alzet minipumps caused a small but significant decrease in striatal DA levels and an upregulation of anti-oxidative systems and DNA repair. It is possible that low dose exposure to OTA will result in an earlier onset of parkinsonism when normal age-dependent decline in striatal DA levels are superimposed on the mycotoxin-induced lesion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call