Abstract

Cholelithiasis etiology intricately involves lipid metabolism. We sought to investigate the plausible causal link between genetically proxied lipid-lowering medications-specifically HMGCR inhibitors, PCSK9 inhibitors, and NPC1L1 inhibitors-and cholelithiasis risk. Our study utilized two genetic instruments for exposure to lipid-lowering drugs. These instruments encompassed genetic variants linked to low-density lipoprotein (LDL) cholesterol within or in proximity to drug target genes, along with loci governing gene expression traits of these targets. Effect estimates were derived through Inverse-variance-weighted MR (IVW-MR) and summary-data-based MR (SMR) methods. Higher HMGCR-mediated LDL cholesterol levels (IVW-MR, OR = 2.15, 95% CI = 1.58-2.94; P = 0.000) and increased HMGCR expression (SMR, OR = 1.19, 95% CI = 1.04-1.37; P = 0.014) are linked to elevated cholelithiasis risk, suggesting potential benefits of HMGCR inhibition. In contrast, higher PCSK9-mediated LDL cholesterol levels (IVW-MR, OR = 0.72, 95% CI = 0.56-0.94; P = 0.015) and increased PCSK9 expression (SMR, OR = 0.90, 95% CI = 0.82-0.99; P = 0.035) both correlate with lower cholelithiasis risk, indicating that PCSK9 inhibition may elevate this risk. Nevertheless, no substantial link emerged between NPC1L1-mediated LDL cholesterol or NPC1L1 expression and cholelithiasis in both IVW-MR and SMR analyses. This MR investigation affirms the causal link between the utilization of HMGCR inhibitors and a diminished risk of cholelithiasis. Additionally, it indicates a causal link between PCSK9 inhibitors use and increased cholelithiasis risk. However, no significant correlation was found between NPC1L1 inhibitors use and cholelithiasis risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call