Abstract

Chinook salmon (Oncorhynchus tshawytscha) populations have experienced widespread declines in abundance and abrupt shifts toward younger and smaller adults returning to spawn in rivers. The causal agents underpinning these shifts are largely unknown. Here we investigate the potential role of late-stage marine mortality, defined as occurring after the first winter at sea, in driving this species’ changing age structure. Simulations using a stage-based life cycle model that included additional mortality during after the first winter at sea better reflected observed changes in the age structure of a well-studied and representative population of Chinook salmon from the Yukon River drainage, compared with a model estimating environmentally-driven variation in age-specific survival alone. Although the specific agents of late-stage mortality are not known, our finding is consistent with work reporting predation by salmon sharks (Lamna ditropis) and marine mammals including killer whales (Orcinus orca). Taken as a whole, this work suggests that Pacific salmon mortality after the first winter at sea is likely to be higher than previously thought and highlights the need to investigate selective sources of mortality, such as predation, as major contributors to rapidly changing age structure of spawning adult Chinook salmon.

Highlights

  • Changes in age structure have been well documented in exploited species such as fish populations experiencing top-down pressure from fisheries or natural predators [1]

  • Guppy (Poecilia reticulata) populations that live in high predation environments display age structure truncation [5]

  • We simulated the impact of late-stage marine mortality on the spawning population age structure of Chinook salmon from the Salcha River, a tributary to the Yukon River, under alternative scenarios describing the intensity and selectivity of additional mortality in the ocean after the first winter at-sea

Read more

Summary

Introduction

Changes in age structure have been well documented in exploited species such as fish populations experiencing top-down pressure from fisheries or natural predators [1]. The ecological consequences of age structure changes, such as reduced egg and offspring quality, have been hypothesized to reduce productivity of populations, which is concerning for imperiled species that are failing to recover despite reduction in fishing mortality or the implementation of fishery closures [2, 3]. Evidence that demographic changes can be the result of top-down control has been revealed from controlled experiments [4]. Guppy (Poecilia reticulata) populations that live in high predation environments display age structure truncation [5].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call