Abstract

BackgroundDespite numerous trials investigating robot-assisted therapy (RT) effects on upper-extremity (UE) function after stroke, few have explored the relationship between three-dimensional (3D) reach-to-target kinematics and clinical outcomes. The objectives of this study were to 1) investigate the correlation between kinematic parameters of 3D reach-to-target movements and UE clinical outcome measures, and 2) examine the degree to which differences in kinematic parameters across individuals can account for differences in clinical outcomes in response to RT.MethodsTen chronic stroke survivors participated in a pilot RT intervention (eighteen 1-h sessions) integrating cognitive skills training and a home-action program. Clinical outcome measures and kinematic parameters of 3D reach-to-target movements were collected pre- and post-intervention. The correlation between clinical outcomes and kinematic parameters was investigated both cross-sectionally and longitudinally (i.e., changes in response to the intervention). Changes in clinical outcomes and kinematic parameters were tested for significance in both group and subject-by-subject analyses. Potential associations between individual differences in kinematic parameters and differences in clinical outcomes were examined.ResultsModerate-to-strong correlation was found between clinical measures and specific kinematic parameters when examined cross-sectionally. Weaker correlation coefficients were found longitudinally. Group analyses revealed significant changes in clinical outcome measures in response to the intervention; no significant group changes were observed in kinematic parameters. Subject-by-subject analyses revealed changes with moderate-to-large effect size in the kinematics of 3D reach-to-target movements pre- vs. post-intervention. Changes in clinical outcomes and kinematic parameters varied widely across participants.ConclusionsLarge variability was observed across subjects in response to the intervention. The correlation between changes in kinematic parameters and clinical outcomes in response to the intervention was variable and not strong across parameters, suggesting no consistent change in UE motor strategies across participants. These results highlight the need to investigate the response to interventions at the individual level. This would enable the identification of clusters of individuals with common patterns of change in response to an intervention, providing an opportunity to use cluster-specific kinematic parameters as a proxy of clinical outcomes.Trial registrationClinicalTrials.gov, NCT02747433. Registered on April 21st, 2016

Highlights

  • Every year, about 795,000 people suffer a new or recurrent stroke in the United States [1] leading to hemiparesis and significant effects on the functional use of the paretic arm and hand [2]

  • The correlation between changes in kinematic parameters and clinical outcomes in response to the intervention was variable and not strong across parameters, suggesting no consistent change in UE motor strategies across participants. These results highlight the need to investigate the response to interventions at the individual level. This would enable the identification of clusters of individuals with common patterns of change in response to an intervention, providing an opportunity to use cluster-specific kinematic parameters as a proxy of clinical outcomes

  • Clinical research studies report the results of rehabilitation interventions via a collection of standardized clinical outcome measures of UE function (e.g., Fugl-Meyer Assessment Upper Extremity subscale [Fugl-Meyer Upper Extremity Assessment (FMA-UE)] [12], Wolf Motor Function Test [WMFT] and Functional Ability Scale [WMFT-FAS] [13, 14]), and measures of UE activity performance in the home (e.g., Motor Activity Log [MAL] [15])

Read more

Summary

Introduction

About 795,000 people suffer a new or recurrent stroke in the United States [1] leading to hemiparesis and significant effects on the functional use of the paretic arm and hand [2]. Clinical research studies report the results of rehabilitation interventions via a collection of standardized clinical outcome measures of UE function (e.g., Fugl-Meyer Assessment Upper Extremity subscale [FMA-UE] [12], Wolf Motor Function Test [WMFT] and Functional Ability Scale [WMFT-FAS] [13, 14]), and measures of UE activity performance in the home (e.g., Motor Activity Log [MAL] [15]). Despite numerous trials investigating robot-assisted therapy (RT) effects on upper-extremity (UE) function after stroke, few have explored the relationship between three-dimensional (3D) reach-to-target kinematics and clinical outcomes. The objectives of this study were to 1) investigate the correlation between kinematic parameters of 3D reach-to-target movements and UE clinical outcome measures, and 2) examine the degree to which differences in kinematic parameters across individuals can account for differences in clinical outcomes in response to RT

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call