Abstract

Muscle fatigue can limit performance both in sports and daily life activities. Consecutive days of exercise without a proper recovery time may elicit cumulative fatigue. Although it has been speculated that skin temperature could serve as an indirect indicator of exercise-induced adaptations, it is unclear if skin temperature measured by infrared thermography (IRT) could be an outcome related to the effects of cumulative fatigue. In this study, we recruited 21 untrained women and induced cumulative fatigue in biceps brachii over two consecutive days of exercise. We measured delayed onset muscle soreness (DOMS, using a numeric rate scale), maximal strength (using a dynamometer), and skin temperature (using IRT) in exercise and non-exercise muscles. Cumulative fatigue reduced muscle strength and increased DOMS. Skin temperature in the arm submitted to cumulative fatigue was higher for minimum and mean temperature, being asymmetrical in relation to the control arm. We also observed that the variations in the minimum and mean temperatures correlated with the strength losses. In summary, skin temperature measured by IRT seems promising to help detect cumulative fatigue in untrained women, being useful to explain strength losses. Future studies should provide additional evidence for the potential applications not only in trained participants but also in patients that may not be able to report outcomes of scales or precisely report DOMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.