Abstract
Generative AI that can produce realistic text, images, and other human-like outputs is currently transforming many different industries. Yet it is not yet known how such tools might influence social science research. I argue Generative AI has the potential to improve survey research, online experiments, automated content analyses, agent-based models, and other techniques commonly used to study human behavior. In the second section of this article, I discuss the many limitations of Generative AI. I examine how bias in the data used to train these tools can negatively impact social science research—as well as a range of other challenges related to ethics, replication, environmental impact, and the proliferation of low-quality research. I conclude by arguing that social scientists can address many of these limitations by creating open-source infrastructure for research on human behavior. Such infrastructure is not only necessary to ensure broad access to high-quality research tools, I argue, but also because the progress of AI will require deeper understanding of the social forces that guide human behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.