Abstract

Fractional order calculus always includes integer-order too. The question that crops up is: Can it be a widely accepted generalized version of classical calculus? We attempt to highlight the current problems that come in the way to define the fractional calculus that will be universally accepted as a perfect generalized version of integer-order calculus and to point out the efforts in this direction. Also, we discuss the question: Given a non-integer fractional order differential equation as a mathematical model can we readily write the corresponding physical model and vice versa in the same way as we traditionally do for classical differential equations? We demonstrate numerically computationally the pros and cons while addressing the questions keeping in the background the generalization of the inverse of a matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.