Abstract

Wettability characterisation in a porous medium is challenging owing to the heterogeneity and large-scale of the interacting surface. Measuring the liquid-solid contact area can be used as a real-time wettability quantification at the Darcy scale. However, flow, grain size, and saturation path can affect the liquid-solid contact area. In this work, we use the two-tracer experiments to quantify the liquid-solid contact area and relate it with different parameters affecting the liquid-solid contact area. We do experiments at different conditions, i.e. (a) when the organic phase is at residual saturation and (b) when both phases flow. When the organic phase is immobile, increasing the flow rate does not change the residual saturation significantly; however, the water-solid contact area increases because of the increased corner flow. When both organic and aqueous phases flow, the relationship between the water saturation and water-solid contact area is found to be dependent on the grain size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.